Advanced High-Strength Steel Technologies in the 2013 Ford Fusion

Shawn Morgans
Ford Motor Company
Agenda

- Background
- Material Usage
- Design Approach
- Functional Performance
 - Static Stiffness
 - Dynamic Stiffness
 - Safety
Global Footprint

★ Engineering: Original Platform developed in Sweden & Germany
Platform Updates and New Top Hats developed in Dearborn

★ Manufacturing: NA 2 Models / 2 Manufacturing Sites
EU 3 Models / 2 Manufacturing Sites
APA 1 Model / 1 Manufacturing Site
Platform Development

- 2011 Mondeo
- 2013 Fusion / Mondeo

Based on current EU CD Platform currently used for the Mondeo, S-Max, and Galaxy

- Cross members redesigned for new seating and wiring requirements
- Rear Rails modified for implementation of integral link rear suspension and mass reduction
- Sled Runners up-gauged for Front Impact performance
- Cowl Structure modified for Ped Pro
- Rear Pan and Cross Member modified for improved NVH
- Floor Side Inner joints modified for improved side impact performance
Upper Body – Global Commonality

- **FoE Unique Part**
- **FNA / FoE Common**
- **FNA Unique (no FoE surrogate)**
- **FoE Unique (no FNA surrogate)**

- Common geometry for the A-Pillar / Roof Rail with modified material grade
- Modified gauge and grade for EuroNCAP
Material Usage
Material - BIW

Mild Steel
BH - HSLA (YS < 300)
HSLA (YS > 300)
DP 600
DP 800
DP 1000
Boron - Martensitic

Average Yield Strength = 348 MPa
Material - Closures

- Mild Steel: 30.8%
- BH – HSLA (YS < 300): 30.8%
- DP 800: 5.9%
- Boron - Martensitic: 9.7%
- Other: 2.2%
- Other: 9.7%
Design Efficiency

BIW Efficiency Plot

Door Efficiency Plot

Industry Average

2013 Ford Fusion

2013 Ford Fusion

Mass Efficiency Index

Door Mass (kg)

BIW Mass (kg)
Front Structure Design

Dash Cross Member acts as a compression member during loading to stabilize the Front Rail

Y-Brace replaces the typical Torque Box to distribute load to the rocker and the sled runners

Hexagonal Front Rail section for improved axial crush performance allowing for the use of lower strength material with no loss of performance

S-Brace Rail section angles toward the rocker as it transitions under the dash for improved load path
Energy Absorbing Cowl Design

Vehicle needed to be designed to meet both EuroNCAP - Gen II and proposed Global (GTR) requirements for Head Impact.

Proposed styling prevented the use of conventional Cowl designs for meeting HIC requirements during windshield impacts.

Patent Pending design allowed for the achievement of the targeted HIC values.

Flange design allows for the structure to flex under impact loading and increase energy absorption.
Rear Under Body – Lion’s Foot

Integrated into the rail section for optimal load transfer to improve joint stiffness – elimination of flange flex

Improved joint resulted in the following improvements in BIW torsional stiffness:

- **4-Door:** 13%
- **Other:** 25%

Local and equivalent stiffness for Subframe and Shock attachments were increased 10%

Typical “lions foot” set on pan and joined to rail section only at the weld flanges
Benefits of Hydro-Forming

1. Increased structural performance (strength to weight ratio, improved torsion and bending stiffness) due to:
 - Continuous closed section optimizes sectional properties
 - Optimal section in a given package envelope due to lack of weld flanges
 - Elimination of joints provides better structural continuity
2. Improved material utilization (<5% Engineered Scrap)
3. Part consolidation
4. Improved tolerance & process control
5. Material gauge changes without modifying forming die

All of these advantages lead to:
- Reduced cost
- Reduced weight
- Lower tooling investment
A-Pillar / Roof Rail Design

Extension of the design concept used for the F-150 into a unibody structure

Added brackets allow for the continuation of standard Bill of Process – Resistance Spot Welding

Advantages associated with the performance of continuous closed sections resulted in a 2.1 kg/side save and significant cost reduction compared to a Press Hardened, stamped design

1.2 mm HSLA 340
2.0 mm DP800

1.2 mm DP800

2.0 mm DP800

DP1000 Tube from the base of the A-Pillar to C-Pillar
Bill of Process drove the use of RSW for the connection between the Body Side Outer and the hydro-formed tube.

Weld access holes in the tube were required to gain access to the joint.

- Required Body Side weld
- Roof Bow Bracket
- Weld access hole

Weld access holes placed so that the required brackets provide added reinforcement to the tube.
B-Pillar Design

Reinf Center Hinge Pillar
1.4 mm Boron

Plr Bdy Lock Inr
0.75 mm HSLA 340

Bracket Center Pillar Upper
1.2 mm DP800

Hinge Reinforcement Outer
1.75 mm DP800

Tube – Rear Body Pillar
1.8 mm DP1000

Tube – Front Body Pillar
1.4 mm DP1000

Plr Bdy Lock Inr
1.2 mm Boron

Reinf Ctr Bdy Plr - Upr
1.0 mm Boron
Tubular design provides significant benefit, but required additional components to perform complete function of a B-Pillar

- B-Pillar Inner required for Retractor and Trim attachment
- Hinge Pillar Reinforcement required for hinge attachment
- Tie Straps added to control deformation during loading
- All added components optimized to improve performance during Roof Strength and Side Impact loading
B-Pillar Performance Comparison

- Continuous closed section of the tubes provides increase in section performance
- Additional “walls” of the hydro-formed tubes improve bending performance of the pillar at lower mass
- Reduced dimension in fore/aft direction delays the onset of buckling on the compressive face during axial loading

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Concept Stamped Boron</th>
<th>Current CD4</th>
<th>Guideline When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Bending Moment</td>
<td>4732</td>
<td>5042 (~Same of Boron)</td>
<td>Bending Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Roof Strength, Side Impact)</td>
</tr>
<tr>
<td>Moment of Inertia</td>
<td>1,364,402</td>
<td>311,352 (~23% of Boron)</td>
<td>Stiffness</td>
</tr>
<tr>
<td>Critical Axial Load</td>
<td>27.66</td>
<td>362 (~13x Boron)</td>
<td>Column Loading</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Roof Strength)</td>
</tr>
</tbody>
</table>
B-Pillar Performance Benefits

IIHS Side Impact Performance:
- Max intrusion is similar at the beltline
- Intrusion with the tube is 64 mm lower than the baseline vehicle at the roof rail.

Mass Savings:
- 6 kg over a conventional Press Hardened design
- 4 kg over a Press Hardened design with TRB

Cost Savings: Significant

Black – Un-deformed
Blue – CD4 Baseline
Red – Hydro-formed Tube
GMAW vs Laser Welding

- Mechanical properties of Dual Phase materials is impacted significantly by the rapid heating and cooling associated with welding processes.
- Within the Heat Affected Zone (HAZ) the presence of decomposed martensite has been credited with a softening of the material.
- Hardness reductions of 10% - 40% have been documented within the HAZ indicating a reduction in yield and tensile strengths.
- Gas Metal Arc Welding inputs more heat than laser welding resulting in a larger HAZ.

Performance Benefits of Laser Welding

GMAW Assembly

Weld separation

Laser Welded Assembly

Laser welded samples have increased buckling and peak loads and reduced displacements.

Reduced and more controlled deformation at impact point.
Body Side Laser Welding

A-Pillar

B-Pillar

Ring Assembly
Roof Design – Low Gauge

- Gauge reduced to 0.65 mm from standard 0.75 mm
- Strength dominated performance recouped by use of BH210 material over mild steel
- Stiffness increased through use of DVD pads
- DVD pads are bonded to the roof panel in trim with urethane

- 0.51 kg mass savings associated with the gauge reduction and elimination of NVH bows
- Additional mass reduction is achievable with further gauge reduction
Roof Design – Laser Braze

- Utilization of the braze joint at the body side interface resulted in:
 - Improved craftsmanship
 - Reduced cost
 - Reduced mass
- Roof was designed with a “back flange” at the body side interface to allow for dimensional variability without a quality effect on the braze operation
In Plant Laser Welding

- Body Side Outer is laser welded to the hydro-form tube along the A-Pillar
- Prevented the use of access holes that would have been required for the use of Resistance Spot Welding (RSW)
- Preservation of the continuity of the A-Pillar tube allowed the pillar section to be minimized
- Enabled “Refined and Light” look required by the studio
Structural Adhesive

- Total of 21 m of adhesive added
- Adhesive added primarily to improve body stiffness
- Resulted in a torsional stiffness increase of ≈ 3%
- Body Side adhesive added for joining to tubular components with reduce reliance on thermal joining
Static Stiffness

Bending Stiffness (N/mm)

2011 Mondeo: 10850
2013 Fusion: 11100

1.3 % Improvement

Torsional Stiffness (kN m/rad)

2011 Fusion: 10500
2011 Mondeo: 10000
2013 Fusion: 11500

10.5 % Improvement