A Winner: Car Body Design Development of the Hyundai Sonata

Carsten Höfer
Hyundai Motor Europe Technical Center
Contents

Product Concept

- Background
- History
- Customer proposition
- Styling
- Practicality
- Efficiency

BiW Concept

- Development process
- Weight optimization
- Stiffness
- Material
- Safety
Background

European market demands

- **Styling**
 - Emotional design to express individuality

- **Efficiency**
 - Low cost of ownership

- **Practicality**
 - High load capacity, premium equipment grade

- **Performance**
 - Sportive handling and driving

Hyundai Sonata at GDIS Conference 2013
Customer Proposition

Fuel Efficiency
• Best in class with 113g CO2/km

Roominess Practicality
• Best in class roominess
• Class leading practicality

Equipment
• 3 USPs: rear seat reclining, auto defog, heated steering wheel

Design
• Sporty and emotional
• Modern interior

Value
• Target best in TCO
• Competitive pricing
Exterior Styling

- Eagle eye style headlamp with LED DRL
- Hyundai family hexagon radiator grill
- Characteristic DLO graphic
- Wing-shape style rear combi lamp applied led and light curtain
- 18 inch alloy wheel in hypersilver color

Contact
Roof-garnish
Interior Styling

- 2-circle digilog style with center-digital display
- Center-facia with high-tech appeal
- Dynamical garnish
- Luxury gear-shift knob
- Sleek consol box
Cargo capacity

- Cargo capacity 19.5 cu. ft. (553 liters) with the rear seats occupied
- Up to 60.7 cu. ft. (1718 liters) with the rear seats folded down
Efficiency

Strong TCO performance through:
- High residual value
- 5-year triple care program
- Competitive RCAR performance

Total cost of ownership:

Aerodynamics

<table>
<thead>
<tr>
<th></th>
<th>Predecessor</th>
<th>i40</th>
<th>Competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>0.32</td>
<td>0.29</td>
<td>0.29</td>
</tr>
</tbody>
</table>

Fuel efficiency

<table>
<thead>
<tr>
<th></th>
<th>Predecessor</th>
<th>i40</th>
<th>Competition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 (g/km)</td>
<td>214</td>
<td>132</td>
<td>148</td>
</tr>
<tr>
<td>Predecessor</td>
<td>22%</td>
<td>8,013</td>
<td>8,840</td>
</tr>
<tr>
<td>i40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competition</td>
<td>8,878</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIW Concept
Development
Process

Model Fix → Design → Test → SOP

Full schedule predecessor 24M

-2

-4

-6

Full schedule i40 18M
Weight optimization

- Achieved a 7.6% reduction in BIW weight compared to predecessor.

EVI (Early Vendor Involvement)
Part optimization
Center floor

- Rearranging the part assembly allowed for a reduction of the material thickness
- From single part with uniform thickness to three parts with different, optimized thickness
Part optimization
Rear floor

• Change of the form from linear interior to radial interior lead to a material thickness reduction
• Divergence angle to improve airflow and NVH performance

Spare Member (1.0)
Spare Member (0.8)

Rear Floor (0.7)
Predecessor

Applying divergence angle

-1.4 Kg
Body stiffness & lightweight index

- Increased the torsional stiffness by **141%** and the bending stiffness by **19%**.
- Achieved **11%** more torsional and **23%** more bending stiffness compared to competition.